3,958 research outputs found

    Explanation and Quasi-Miracles in Narrative Understanding: The Case of Poetic Justice

    Get PDF
    This is the peer reviewed version of the following article: Craig Bourne, and Emily Caddick Bourne, ‘Explanation and Quasi‐miracles in Narrative Understanding: The Case of Poetic Justice’, Dialectica, Vol. 71 (4): 563-579, January 2018, which has been published in final form at https://doi.org/10.1111/1746-8361.12201. Under embargo until 29 January 2020. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.David Lewis introduced the idea of a quasi-miracle to overcome a problem in his initial account of counterfactuals. Here we put the notion of a quasi-miracle to a different and new use, showing that it offers a novel account of the phenomenon of poetic justice, where characters in a narrative get their due by happy accident (for example, when the murderer of King Mitys happens to be crushed by a falling statue of Mitys). The key to understanding poetic justice is to see what makes poetically just events remarkable coincidences. We argue that remarkable coincidence is to be understood in terms of a distinctive type of experience quasi-miracles offer. Cases of poetic justice offer a dual awareness of the accidental nature of the events and of a non-accidental process, involving intention, which it appears would explain them. We also extend this account to incorporate how we might experience magic tricks. An account of poetic justice as quasi-miraculous allows us to account for the experience of encounters with poetic justice, as involving the incongruity of seeing design in accident.Peer reviewedFinal Accepted Versio

    Mathematics Is Physics

    Full text link
    In this essay, I argue that mathematics is a natural science---just like physics, chemistry, or biology---and that this can explain the alleged "unreasonable" effectiveness of mathematics in the physical sciences. The main challenge for this view is to explain how mathematical theories can become increasingly abstract and develop their own internal structure, whilst still maintaining an appropriate empirical tether that can explain their later use in physics. In order to address this, I offer a theory of mathematical theory-building based on the idea that human knowledge has the structure of a scale-free network and that abstract mathematical theories arise from a repeated process of replacing strong analogies with new hubs in this network. This allows mathematics to be seen as the study of regularities, within regularities, within ..., within regularities of the natural world. Since mathematical theories are derived from the natural world, albeit at a much higher level of abstraction than most other scientific theories, it should come as no surprise that they so often show up in physics. This version of the essay contains an addendum responding to Slyvia Wenmackers' essay and comments that were made on the FQXi website.Comment: 15 pages, LaTeX. Second prize winner in 2015 FQXi Essay Contest (see http://fqxi.org/community/forum/topic/2364

    Creating seating plans: A practical application

    Get PDF
    © 2016 Operational Research Society Ltd. All rights reserved. 0160-5682/16. This paper examines the interesting problem of designing seating plans for large events such as weddings and gala dinners where, among other things, the aim is to construct solutions where guests are sat on the same tables as friends and family, but, perhaps more importantly, are kept away from those they dislike. This problem is seen to be N P-complete from a number of different perspectives. We describe the problem model and heuristic algorithm that is used on the commercial website www.weddingseatplanner.com. We present results on the performance of this algorithm, demonstrating the factors that can influence run time and solution quality, and also present a comparison with an equivalent IP model used in conjunction with a commercial solver

    ARAS: an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes.

    Get PDF
    BackgroundAutomated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing a safe environment for radiation workers but also to ensure accuracy of dispensed radioactivity and an efficient workflow. For this purpose, we have designed ARAS, an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes with particular focus on fluorine-18 ((18)F).MethodsThe key to the system is the combination of a radiation detector measuring radioactivity concentration, in line with a peristaltic pump dispensing known volumes.ResultsThe combined system demonstrates volume variation to be within 5 % for dispensing volumes of 20 μL or greater. When considering volumes of 20 μL or greater, the delivered radioactivity is in agreement with the requested amount as measured independently with a dose calibrator to within 2 % on average.ConclusionsThe integration of the detector and pump in an in-line system leads to a flexible and compact approach that can accurately dispense solutions containing radioactivity concentrations ranging from the high values typical of [(18)F]fluoride directly produced from a cyclotron (~0.1-1 mCi μL(-1)) to the low values typical of batches of [(18)F]fluoride-labeled radiotracers intended for preclinical mouse scans (~1-10 μCi μL(-1))

    Animals and Literature

    Get PDF
    Openly licensed anthology focused on the theme of Animals and Literature. Contains Alice in Wonderland by Lewis Carroll and The Island of Doctor Moreau by H.G. Wells

    Creep curve measurement to support wear and adhesion modelling, using a continuously variable creep twin disc machine

    Get PDF
    Predictive modelling of wear and adhesion at rolling-sliding contacts such as a railway rail and wheel depends on understanding the relationship between slip and shear force at the contact surface, i.e. the creep verses force curve. This paper describes a new approach to creep curve measurement using a twin disc machine running with a continuous programmed variation of creep, enabling an entire creep curve to be defined in a single experiment. The work focuses on very low levels of creep, ranging from zero to 1%, and shows clear correlation between the creep curve gradient and the full slip friction coefficient for dry and lubricated contacts. Comparison of data generated using the new approach with that generated using multiple tests each at a single creep level shows good agreement. Comparison is also made between the twin disc data and results for full size three dimensional rail-wheel contacts to examine how two and three dimensional contact adhesion data are related. The data generated has application in wear and rolling contact fatigue modelling, but the original motivation for the research was generation of creep curves to support prediction of low adhesion conditions at the rail-wheel interface based upon monitored running conditions prior to brake application. The range of contact conditions investigated includes those experienced in service and during driver training, with the correlation found between creep curve gradient (measurable prior to braking) and full slip friction coefficient (not measurable until brakes are applied) representing a key finding

    Low-Friction, High-Stiffness Joint for Uniaxial Load Cell

    Get PDF
    A universal-joint assembly has been devised for transferring axial tension or compression to a load cell. To maximize measurement accuracy, the assembly is required to minimize any moments and non-axial forces on the load cell and to exhibit little or no hysteresis. The requirement to minimize hysteresis translates to a requirement to maximize axial stiffness (including minimizing backlash) and a simultaneous requirement to minimize friction. In practice, these are competing requirements, encountered repeatedly in efforts to design universal joints. Often, universal-joint designs represent compromises between these requirements. The improved universal-joint assembly contains two universal joints, each containing two adjustable pairs of angular-contact ball bearings. One might be tempted to ask why one could not use simple ball-and-socket joints rather than something as complex as universal joints containing adjustable pairs of angularcontact ball bearings. The answer is that ball-and-socket joints do not offer sufficient latitude to trade stiffness versus friction: the inevitable result of an attempt to make such a trade in a ball-and-socket joint is either too much backlash or too much friction. The universal joints are located at opposite ends of an axial subassembly that contains the load cell. The axial subassembly includes an axial shaft, an axial housing, and a fifth adjustable pair of angular-contact ball bearings that allows rotation of the axial housing relative to the shaft. The preload on each pair of angular-contact ball bearings can be adjusted to obtain the required stiffness with minimal friction, tailored for a specific application. The universal joint at each end affords two degrees of freedom, allowing only axial force to reach the load cell regardless of application of moments and non-axial forces. The rotational joint on the axial subassembly affords a fifth degree of freedom, preventing application of a torsion load to the load cell

    Scaling Roll Call Votes with wnominate in R

    Get PDF
    This paper presents a software package designed to estimate Poole and Rosenthal W-NOMINATE scores in R. The package uses a logistic regression model to analyze political choice data, usually (though not exclusively) from a legislative setting. In contrast to other scaling methods, W-NOMINATE explicitly assumes probabilistic voting based on a spatial utility function, where the parameters of the utility function and the spatial coordinates of the legislators and the votes can all be estimated on the basis of observed voting behavior. Building on software written by Poole in Fortran, the new wnominate package in R facilitates easier data input and manipulation, generates bootstrapped standard errors, and includes a new suite of graphics functions to display the results. We demonstrate the functionality of this package by conducting a natural experiment using roll calls -- an experiment which is greatly simplified by the data manipulation capabilities of the wnominate package in R

    Recovering a Basic Space from Issue Scales in<i>R</i>

    Get PDF
    Basicspace is an R package that conducts Aldrich-McKelvey and Blackbox scaling to recover estimates of the underlying latent dimensions of issue scale data. We illustrate several applications of the package to survey data commonly used in the social sciences. Monte Carlo tests demonstrate that the procedure can recover latent dimensions and reproduce the matrix of responses at moderate levels of error and missing data

    Low-Friction, Low-Profile, High-Moment Two-Axis Joint

    Get PDF
    The two-axis joint is a mechanical device that provides two-degrees-of-freedom motion between connected components. A compact, moment-resistant, two-axis joint is used to connect an electromechanical actuator to its driven structural members. Due to the requirements of the overall mechanism, the joint has a low profile to fit within the allowable space, low friction, and high moment-reacting capability. The mechanical arrangement of this joint can withstand high moments when loads are applied. These features allow the joint to be used in tight spaces where a high load capability is required, as well as in applications where penetrating the mounting surface is not an option or where surface mounting is required. The joint consists of one base, one clevis, one cap, two needle bearings, and a circular shim. The base of the joint is the housing (the base and the cap together), and is connected to the grounding structure via fasteners and a bolt pattern. Captive within the housing, between the base and the cap, are the rotating clevis and the needle bearings. The clevis is attached to the mechanical system (linear actuator) via a pin. This pin, and the rotational movement of the clevis with respect to the housing, provides two rotational degrees of freedom. The larger diameter flange of the clevis is sandwiched between a pair of needle bearings, one on each side of the flange. During the assembly of the two-axis joint, the circular shims are used to adjust the amount of preload that is applied to the needle bearings. The above arrangement enables the joint to handle high moments with minimal friction. To achieve the high-moment capability within a low-profile joint, the use of depth of engagement (like that of a conventional rotating shaft) to react moment is replaced with planar engagement parallel to the mounting surface. The needle bearings with the clevis flange provide the surface area to react the clevis loads/moments into the joint housing while providing minimal friction during rotation. The diameter of the flange and the bearings can be increased to react higher loads and still maintain a compact surface mounting capability. This type of joint can be used in a wide variety of mechanisms and mechanical systems. It is especially effective where precise, smooth, continuous motion is required. For example, the joint can be used at the end of a linear actuator that is required to extend and rotate simultaneously. The current design application is for use in a spacecraft docking-system capture mechanism. Other applications might include industrial robotic or assembly line apparatuses, positioning systems, or in the motion-based simulator industry that employs complex, multi-axis manipulators for various types of motions
    corecore